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PHASE EQUILIBRIA IN THE TERNARY
SYSTEM METHYL 1,1-DIMETHYLETHYL
ETHER + BENZENE + TOLUENE

RICARDO REICH* *, MARCELA CARTES?,
HUGO SEGURA? and JAIME WISNIAK ®

% Departamento de Ingenieria Quimica, Universidad de Concepcion,
P.O.B. 53-C, Concepcion, Chile;
"Department of Chemical Engineering, Ben-Gurion University of the Negev,
Beer-Sheva, Israel 84105

( Received 20 September 1998)

Consistent vapor-liquid equilibrium data at 94kPa have been determined for the
ternary system methyl 1,1-dimethylethyl ether (MTBE) + benzene + toluene. The results
indicate that the system deviates positively from ideality and that no azeotrope is
present. The ternary activity coefficients of the system have been correlated with the
composition using the Redlich-Kister, Wilson, NRTL, UNIQUAC, and UNIFAC,
models. It is shown that most of the models allow a very good prediction of the phase
equilibrium of the ternary system using the pertinent parameters of the binary systems.
In addition, the Wisniak-Tamir relations were used for correlating bubble-point
temperatures.

Keywords: Vapor-liquid equilibrium; fuel oxygenating additives; unleaded gasoline;
ethers; aromatics

INTRODUCTION

Ethers are usually added to gasoline as oxygenates to replace lead
anti-knock agents, to inhibit the reactivity of combustion emissions
and to reduce pollution. The commonly used oxygenating additives

*Corresponding author. e-mail: rreich@udec.cl
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are MTBE and light alkanols like methanol and ethanol. MTBE it is
the primary oxygenated compound being used to improve the octane
rating and pollution-reducing capability of gasolines. Phase equili-

- brium data of oxygenated mixtures are important for predicting

the vapor phase composition that would be in equilibrium with gaso-
line mixtures, for which aromatics may constitute up to 3.5%
weight. The system reported here constitutes a particular case of such
mixtures.

Vapor-liquid equilibrium (VLE) data for the system methyl 1, 1-
dimethylethyl ether + benzene have been reported at (323.17, 343.15
and 363.05) K by Jin et al. [1] and at 94kPa by Reich e al. [2]. For
the system methyl 1, 1-dimethylethy! ether + toluene, vapor—liquid
equilibrium data have been reported at 363.15K Plura er al. [3] and at
94 kPa by Reich et al. [2]. According to these references, the two binary
systems present slight to moderate positive deviations from ideality
and do not have azeotropes. In addition, many references of
experimental VLE data pertaining to the system benzene + toluene
can be found in DECHEMA Chemistry Data [4]. Because of problems
of thermodynamic consistency, very few of the recopilated systems (as
for example, the data of Griswold ez al. [5]; measured at 393.15K)
allow to conclude that the system behaves like an ideal solution, as
commonly classified in textbooks. Kassman and Knapp [6] reported
very precise VLE measurements of the system benzene + toluene at
313.15K and 334.15K, showing that the system under consideration
has an almost constant relative volatility very close to the theoretical
ideal value; on the basis of their data the system will be considered
ideal in the data treatment that follows in this work. Partial VLE
data of simulated gasoline mixtures, which include aromatics and
MTBE, have been reported by Wu et al. [7] at fixed compositions
and temperatures, however, these do not allow a study of specific
interactions in solution nor a critical evaluation of the possibility of
predicting the VLE of multicomponent unleaded gasoline mixtures
from binary contributions.

The present work was undertaken to measure VLE data for the
ternary mixture MTBE + benzene + toluene at 94 kPa for which no
data have been previously published. It is part of our experimen-
tal program to determine the vapor-liquid behavior of gasoline
components and oxygenates [2, 8-10].



08: 02 28 January 2011

Downl oaded At:

VAPOUR - LIQUID EQUILIBRIUM 75
1. EXPERIMENTAL SECTION

1.1. Chemicals

Methyl 1, 1-dimethylethyl ether (99.95 mass %), benzene (99.9 + mass
%), and toluene (99.80 mass %) were purchased from Aldrich. The
reagents were used without further purification after gas chromato-
graphy failed to show any significant impurities. The properties and
purity of the pure components (as determined by GLC) appear in
Table 1. Appropriate precautions were taken when handling methyl
1, I-dimethylethyl ether, in order to avoid peroxide formation, and
benzene, a human carcinogen.

1.2. Apparatus and Procedure

An all glass Fischer LABODEST vapor-liquid-equilibrium appara-
tus, model 601 was used in the equilibrium determinations. In this
circulation method apparatus, the solution is heated to its boiling
point by a 250 W immersion heater (Cottrell pump). The vapor—liquid
mixture flows through an extended contact line which guarantees an
intense phase exchange and then enters a separation chamber whose
construction prevents an entrainment of liquid particles into the vapor
phase. The separated gas and liquid phases are condensed and
returned to a mixing chamber, where they are stirred by a magnetic
stirrer, and returned again to the immersion heater. The temperature
in the VLE still has been determined with a Systemteknik S1224 digital

TABLE I Mole percent GLC purities (mass %), refractive index np at the Na D line,
and normal boiling points T of pure components

Component (purity/mass %) np(293.15K) T/K
Methyl 1, 1-dimethylethyl 1.36922* 327.85%
ether (99.95) 1.3690° 328.35°
Benzene (99.9 +) 1.500722 353.18*%

1.50111¢ 353.21¢
Toluene (99.80) 1.49688* 383.65%

1.49694° 383.76°
2 Measured;

® TRC Tables, a-6040 [22];
¢ TRC Tables, a-3200 [23).
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temperature meter and a Pt100$2 probe calibrated at the Swedish
Statens Provningsanstalt with the IPTS-68 temperature scale. The
accuracy is estimated as +0.2K. The total pressure of the system is
controlled by a vacuum pump capable to work under vacuum up to
0.25kPa. The pressure is measured with a Fischer pressure transducer
calibrated against an absolute mercury-in-glass manometer (22 mm
diameter precision tubing with cathetometer reading), the overall
accuracy is estimated as £0.02 kPa. On the average the system reached
equilibrium conditions after 1-2h operation. Samples, taken by
syringing 1.0 uL after the system had achieved equilibrium, were
analyzed by gas chromatography on a Varian 3400 apparatus
provided with a thermal conductivity detector and a Tsp model
SP4400 electronic integrator. The column was 3m long and 0.3cm
in diameter, packed with SE-30. Column, injector and detector
temperatures were (343.15, 423.15, 493.15) K, respectively. Very good
separation was achieved under these conditions, and calibration
analyses were carried out to convert the peak ratio to the mass
composition of the sample. The pertinent polynomial fits had a
correlation coefficient R? better than 0.99. At least three analyses
were made of each composition. Concentration measurements were
accurate to better than +0.001 mole fraction.

2. RESULTS AND DISCUSSIONS

The temperature T and liquid-phase x;, and vapor-phase y; mole
fraction measurements at P =94kPa are reported in Table II,
together with the activity coefficients +; which were calculated from
the following equation [11]:

Py; (Bii — VL)(P—PQ)
In~; = i i
al ln(P?x,-) + RT

+%~Z > yve(26; — &) (1)

where T and P are the boiling point and the total pressure, V'~ is the
molar liquid volume of component i, P? is the pure component vapor
pressure, B; and B; are the second virial coefficients of the pure gases,
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Bj; is the cross second virial coefficient, and
by = 2By — Bj; — By (2)

The standard state for calculation of activity coefficients is the pure
component at the pressure and temperature of the solution. The pure
component vapor pressures P¢ were calculated according to the
Antoine equation:

B;

log(PY/kPa) = A4; — T/K) =G,

3)
where the Antoine constants 4;, B; and C; are reported in Table I11.
The molar virial coefficients B; and B;; were estimated by the method
of Hayden and O’Connell [12] assuming the association parameter 7 to
be zero. Critical properties of components were taken from DIPPR
[13]. The last two terms in Eq. (1) contributed less than 5% to the
activity coefficients, and their influence was important only at very
dilute concentrations. The ternary activity coefficients reported in
Table II are estimated accurate to within 3% and were found to be
thermodynamically consistent as tested by the L-W method of
Wisniak [14] and the McDermot-Ellis method [15] modified by
Wisniak and Tamir [16]. According to these references two experi-
mental points a and b are considered thermodynamically consistent if
the following condition is fulfilled:

D < Dyax (4)
where the local deviation D is given by

N
D= (xig+xp)(Invie — Invp) (5)

i=1

TABLE III  Antoine coefficients, Eq. (3)

Compound A; B; C;
Methyl 1, 1-dimethyl- 5.86078 1032.988 59.880
ethyl ether”

Benzene® 6.08817 1243.256 48.640
Toluene® 6.22372 1432.925 43.929

2 Reich et al. [2].



08: 02 28 January 2011

Downl oaded At:

80 R. REICH et al.

and N is the number of components. The maximum deviation Dy, is
given by:

N 1 1 1 1
max = O (¥ia+ Xp) | —+—+—+— | Ax
P Xia Yia Xib Vi

MZ"

AP
(Xia + Xip) —-+ 2 Z | In 5 — In ;4| Ax

s P

I
-

+2 (Xia + %) B{(Ta + C) > + (Ts + C) 2}AT  (6)

Mz

[
-

The errors in the measurements Ax, AP and AT were as previously
indicated. The first term in Eq. (6) was the dominant one. For the
experimental points reported here D never exceeded 0.045 while the
smallest value of D, was 0.235.

The activity coefficients for the ternary system were correlated from
the following Redlich-Kister expansion [17]:

GE

RT =x1X2[b12 + c1a(x1 — X32) + dian(x1 — x2)7]

+x1x3[b13 + c13(x1 — x3) + diz(x1 — x3)7]
+ x2%x3[b2s + €23(x2 — x3) + daa (2 — x3)?]
+ x1x2x3(C + D1x1 + D3x3) (7

The following relationships can be derived from Eq. (7)
ln%l— = (b13 - b23)X3 + (b12 + Cx3)(x2 - xl) - 613X3(X3 - 2x1)

+e12[2x1%7 = (%1 — %2)%] — Caax3(2x2 — x3) + Dyx1x3(2%2 — x1)
- d13X3(X3 - 3x1)(x1 —x3) + D2X3JC2(X2 — ZX1)

+di2(x2 — x1)[(%2 = x1)% —4x1x2] — dp3xa(x2 — x3)(3x2 — x3)  (8)

ln% = (b13 — + D233 + Cx2)(x3 — x1) + X2 (b12 — b23) + €23%2(2x3 — X3)

+e3[6xix3 — (1 — x2)2] + c12%2(2x1 — X%2) + D1x13x2(2x3 ~ x1)
+ dy3xa(3x3 — x2) (%2 — x3) + i3 (%1 — x3) [8x103 — (1 ~ x2) 7]
+ diaxa (32 — 3x1) (x2 — x1) (%)
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where by, c;; and dj; are the constants for the pertinent jj binary, and C,
D, and D, are ternary constants. All the constants in Eqs. (8) and (9)
are assumed to be independent of the temperature. Data and constants
for two of the binary systems were calculated from the data of Reich
et al. [2] and the liquid phase of the system benzene (2) + toluene (3)
was assumed to be ideal. The ternary Redlich-Kister coefficients were
obtained using a Simplex optimization technique. The differences
between the values of the root mean square deviation for the activity
coefficient for the two cases-with and without the ternary constants C,
D,, and D, (Tab. IV) - are statistically not significant, suggesting that
ternary data can be predicted directly from the binary systems. In fact,
equilibrium vapor pressures and compositions were correlated very
well by the NRTL and Wilson models (the pertinent binary param-
eters were calculated from the data of Reich et al. [2] assuming ideal
behavior for the benzene (2) + toluene (3) binary pair in the liquid
phase), and somewhat less, by the modified UNIFAC model [18, 19]
using only binary parameters, both for bubble point-pressure and dew
point pressure calculations, as shown by the statistics and parameters
given in Table V. It can be concluded that the binary data allow a
good prediction of the ternary system.

The boiling points of the systems were correlated by the equation
proposed by Wisniak and Tamir [20];

T/K=ixiT?/K+i{xixjick(xi_xj)k} (10)
i=1 k=0

i=1
+ X1XQ)C3{A + B(x1 - XZ) + C(X] — X3) + D(X2 - X3)}

In the equation # is the number of components (n=2 or 3), T is the
boiling point of the pure component i and m is the number of terms
considered in the series expansion of (x;—x;). C, are the binary
constants where 4, B, C, and D are ternary constants. The following
equation, of the same structure, has been suggested by Tamir [21] for
the direct correlation of ternary data, without use of binary data:

3
T/K = inT? + x1x2[A12 + Bra(x1 — x2) + Cra(x1 — x) +-]

p
+ x1x3[A13 + Bia(x1 — x3) + Cia(x1 — x3)° + -+ ]
+ x2x3[A2s + Boa(%2 — x3) + Co3(x2 — x3)° + -+ ] (1)
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FIGURE 1 Isothermals for the ternary system MTBE (1) + benzene (2) + toluene (3)
at 94kPa from 325K to 365K, every 5K. Coefficients from Eq. (11).
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In Eq. (11) coefficients 4;;, B, and Cy are not binary constants, they
are multicomponent parameters determined directly from the data.
Direct correlation of T(x) for ternary mixtures can be very efficient as
reflected by a lower % average deviation and root mean square
deviation (rmsd) and a smaller number of parameters than those for
Eq. (10). Both equations may require similar number of constants for
similar accuracy, but the direct correlation allows an easier calculation
of boiling isotherms (Figs. 1 and 2). The various constants of Egs. (10)
and (11) are reported in Table VI, which also contains information
indicating the degree of goodness of the correlation. It is clear that for
the ternary system in question a direct fit of the data gives a much
better fit.
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